
Acoustetron II

 The AudioReality™ Sound Server

Crystal River Engineering, Inc.

Manual Revision 210a, May 1996

Copyright © 1996 Crystal River Engineering, Inc. All rights
reserved.

Crystal River Engineering, Inc. acknowledges all trademarks found
in this manual.

Crystal River Engineering, Inc. Crystal River Engineering, Inc.
490 California Ave, Suite 200 12350 Wards Ferry Rd.
Palo Alto, CA 94306 Groveland, CA 95321
Phone: (415) 323-8155 Phone: (209) 962-6382
FAX: (415) 323-8157 FAX: (209) 962-4873

e-mail: info@cre.com
URL: www.cre.com/cre

Acoustetron II User’s Guide 1

Contents

Chapter 1 Introduction...3
Overview ..3
Organization of this manual ..4
Audio spatialization..5

Spatialization inputs & outputs..6

Chapter 2 Getting Started..7
Requirements ...7

Hardware ..7
Software...7
Input and output amplifiers ...7

Output devices...8
Headphones ..8
Nearphones ...9
Quad speakers ..9
Multimedia stereo speakers ..9
Other stereo speakers...9

System components and specifications ..10
Installation..11

Hardware ..11
Startup problems..12
Client software and directory organization................................13

Problems ...14
Technical support ...14
Repair...14
Bugs..14

Chapter 3 Using the Acoustetron II ...15
System start up ..15

Development usage..15
Run-time usage...17

Test and example programs...18
demo...18

2 Acoustetron II User’s Guide

stresstest ..18
example ...18
bmp1test ..18

Application programs...19
audioClient..19

Downloading wave files and other utility programs20
Environment variables ...21
CRE_TRON Software interface ...23

Overview...23
Sample rates and driver selection ..24
Example code..25

Coordinate system ..27
Head tracking ...28

Audio sources ..29
Sound files...29
External inputs ...30

Special topics..31
Atmospheric absorption..31
Spreading loss roll-off ...31

Chapter 4 CRE_TRON Function Reference ...33
Data structures ...33

wavFt ..33
Program routines..35

ars_amplfy_surf ..35
ars_apply_matl..36
ars_locate_box ...37
ars_lock_box ..38
cre_amplfy_source..39
cre_close ...41
cre_close_wave..42
cre_ctrl_wave...43
cre_define_medium ..46
cre_define_output ...48
cre_get_sources_playing ..49
cre_init ..50
cre_locate_head ...52
cre_locate_source ..53
cre_open_wave..55
cre_send_midi ...57
cre_set_dplr ...58
cre_update_audio ...59

Acoustetron II User’s Guide 3

Chapter 5 Glossary..61
FCC Notice ...66

4 Acoustetron II User’s Guide

Chapter 1 Introduction

Overview
Audio Reality, or real-time 3D audio, greatly enhances the effectiveness of virtual
environments. By locating sounds in three-dimensional space, and presenting them
to a listener, the Acoustetron II™ increases an application's ability to transmit
information to the user, to stimulate situational awareness, and to create a sense of
immersion in a virtual environment. The goal of an AudioReality system is to
recreate a sound space in a completely natural and realistic way. When listening to
such a system, a user feels immersed by real-world, three-dimensional sounds,
rather than feeling aware of listening to a flat, one-dimensional stereo image.

The Acoustetron II from Crystal River Engineering, Inc. performs real-time
spatialization of multiple real-time audio sources. For each audio input, the system
produces Left and Right outputs, which are mixed and played through conventional
headphones, nearphones, or speakers. The processing creates the perception that
the source is positioned at any specified location in three-dimensional space. In
addition, the Acoustetron II provides a wave file editing option, which converts the
sound server into a digital sound recording, mixing, and editing environment.

The Acoustetron II is a stand-alone 3D sound server system that can be controlled
via a communication protocol (a RS232 serial connection by default) from any client
computer that is capable of implementing the communication protocol.

The system consists of four signal processing cards housed in an industry standard
486DX4 PC host controller. Each card holds a Motorola DSP56001 clocked at
40 MHz, and high-resolution stereo A/D and D/A converters, with input and
output sampling rates of up to 44,100 samples per second.

The spatialization software included with the Acoustetron II comprises both a
software library and several demo programs. The library routines provide
automatic detection of the Acoustetron sound server, and translate high-level
commands describing source and listener positioning, etc., into the low-level format
needed by the system.

Acoustetron II User’s Guide 5

Organization of this manual

Chapter 1 “Introduction” describes the audio spatialization process and its
implementation on the Acoustetron II.

Chapter 2 “Getting Started” reviews hardware and software requirements for using
the Acoustetron II, explains what comes with the Acoustetron II (standard and
optional) and how to install it, and tells you how to obtain technical support and
service.

Chapter 3 “Using the Acoustetron II” examples how to test your Acoustetron II, and
how to write your own programs for controlling the Acoustetron II.

Chapter 4 “CRE_TRON Function Reference” describes the function calls that are
used to program your Acoustetron II.

Chapter 5 “Glossary” contains a list a often-used terms relating to AudioReality 3D
sound.

6 Acoustetron II User’s Guide

Audio spatialization

The spatialization processing of two separate sound sources is illustrated in
Figure 1. Each of the two sources is pre-processed through a “Distance Model”
filter, which simulates atmospheric loss as a function of the specified distance from
that source to the listener. The output of this filter is then applied to both Left and
Right filters, which together render the source as if it were coming from a certain
direction relative to the listener’s head. Finally, the Left and Right outputs from the
individual sources are mixed together.

• Figure 1 Spatialization processing on the Acoustetron II (shown for one of
its four internal DSP cards).

Distance
Model #1

Left Filter
#1

Right Filter
#1

�Source #1

Distance
Model #2

Left Filter
#2

Right Filter
#2

Source #2 �

Headphones

Right Output

Left Output

The Distance Model and the Left and Right filters can be changed dynamically, as
often as every 23 msec, or about 44 times per second.

The Left and Right filters are generally known as “Head Related Transfer
Functions,” or HRTFs. The filter characteristics were obtained from actual
measurements on a human head. The Acoustetron II uses Finite Impulse Response
(FIR) filters (also known as non-recursive filters).

Acoustetron II User’s Guide 7

Spatialization inputs & outputs

The Acoustetron II offers dynamic selection of two different kinds of sound sources:
external mono inputs and 16-bit sampled mono sound files in wave file format.

The only way to enable/disable the External Input is by controlling whatever is
connected to the physical input jacks on each DSP card (turning it on or off, or
attaching/disconnecting it) - see chapter 3 "External Inputs" for more details. In
addition, a monophonic sound file can be digitally mixed (i.e., by the DSP itself)
with the external sources.

• Figure 2 Signal flow paths on one of the Acoustetron II's internal
DSP cards. The two inputs available to the DSP for spatialization
processing are marked in italics.

R
L

A/D DSP56001 D/A

Source #0

Source #1

External
Inputs

�

�
R
L External

Outputs

R
LExternal

AUX
Inputs

PC ISA Bus

Sound file playback

Acoustetron II User’s Guide 9

Chapter 2 Getting Started

Requirements

Hardware

Since the Acoustetron II is a stand-alone system, the only hardware requirements
are a serial port a on the client system that you intend to use to control the
Acoustetron II audio server. When using the ethernet option the client will require a
standard ethernet card.

Software

The Acoustetron II is currently available with client software libraries and serial
drivers for MS-DOS, IRIX, SOLARIS, and HPUX operating systems. Controlling the
Acoustetron server via ethernet will require the client system to support RPC
(Remote Procedure Call) .

The main demo application software for UNIX systems, audioClient, requires an X
Windows environment with Motif to operate.

Input and output amplifiers

The input of the Acoustetron II's DSP cards is not pre-amplified for direct
microphone input. When digitizing live sound, use a high quality microphone
coupled with a microphone pre-amplifier.

10 AcoustetronII User’s Guide

The Acoustetron II provides spatialized sound to an external Symetrix headphone
amplifier. Please note that the supplied cables that connect the Acoustetron II to the
Symetrix amplifier are balanced stereo cables. Do not use unbalanced mono cables
to connect the two devices. Headphones, nearphones, speakers, or amplifiers can be
connected to the Symetrix outputs. Spatial audio requires a lot of dynamic range to
simulate proper distance attenuation. If a sound input or wave file, located at virtual
arm's length, does not sound loud with cre_amplfy_source() set to 0 dB, you
need to amplify your source input or wave file gain (see the function description of
cre_amplfy_source() in chapter 4 “CRE_TRON Function Reference” for more
details).

Output devices

Your Acoustetron II can be connected to a number of different output devices. The
cre_define_output() function call is used to select an output device. The
default device is headphones. Different devices will provide different levels of
spatialization performance. Their ranking in order from best to worst: headphones,
nearphones, quad speakers, multimedia stereo speakers, other stereo speakers.

Headphones

Headphones are an important part of a virtual acoustic system. Your Acoustetron II
system has been optimized for use with supra-aural, "diffuse-field equalized"
headphones, i.e. headphones which enclose your entire ear, as opposed to
headphones that are placed inside the ear canals. For optimal spatialization results,
we strongly recommend usage of high-quality headphones.

The reference headphones for use with Crystal River Engineering HRTF models, are
Sennheiser HD540 II's (contact Crystal River for availability).

Depending on your virtual audio application, the difference between acoustically
open or acoustically closed headphones might be important. Open headphones
(such as the Sennheiser HD540 II's) do not provide a tight seal between the ear and
the environment. Such headphones are useful in applications where the user has to
be able to hear sounds from the surrounding environment (operator's voice,
warning signals) during the simulation. Acoustically closed headphones try to
suppress all sounds other than the ones delivered by the headphones. They are
useful in completely immersive, virtual environments, or to cancel noisy
surroundings (trade shows, noisy work spaces).

Acoustetron II User’s Guide 11

If you plan to use electro-magnetic head-tracking devices in conjunction with your
Acoustetron II , use headphones with as few metal parts as possible, in order to
avoid electro-magnetic interference between headphones and tracking sensors. Try
to avoid tracking systems which use transmission frequencies between 20-20,000 Hz
(the audible region).

Nearphones

In applications where unobtrusive equipment is important, nearphones can be used
instead of headphones. Nearphones are two speakers (left and right signal), placed
near (within 25 inches) the user's ear. An example of where nearphones are
applicable would be a simulator cab with a projection screen and two speakers
mounted next to the user's seat. The user can get in and out of the cab by simply
sitting down in a chair. To achieve optimal results the user's head should not move
out of the range of the speakers, or turn more than 45 degrees in any direction. The
closer the speakers are placed to the user's ears, the better the resulting
spatialization.

Quad speakers

If speakers cannot be placed close to the listener, a quad speaker - left front/back,
and right front/back - setup is recommended. In this case, the left output of the
Acoustetron II would be wired to both left speakers, the right output to both right
speakers. The listener should be placed near the center of the square formed by the
four speakers.

Multimedia stereo speakers

The term multimedia speakers refers to a stereo speaker setup where the speakers
are built in to a monitor or located close to the sides of a monitor. In such a setup the
user's position is assumed to be right in front of the monitor, forming a more or less
fixed geometry between the listener and the two speakers. Special processing of the
left and right audio signals is applied to enhance the 3D effect in such a setup.
Please note that multimedia speaker processing is sweet spot (see glossary) limited.

Other stereo speakers

This category includes all other forms of stereo speaker setups. A speaker layout
that does not fit the nearphone, quad, or multimedia categories, is unlikely to
produce a convincing 3D effect, and is therefore not recommended.

12 AcoustetronII User’s Guide

System components and specifications

An Acoustetron II base system consists of the following items:

• 4 DSP signal-processing cards.

• A 486DX4 PC host controller system with 16 Mbytes of wave file playback
memory, and 320 Mbytes of wave file storage, DSP cards, Acoustetron II server
software, and a headphone amplifier.

• Acoustetron II Client Software Library and Demos and a serial cable for either a
PC or UNIX system.

• A 9" monochrome monitor, keyboard, and “Acoustetron II Manual”

• Sennheiser headphones and Symetrix headphone amplifier

• Pre-installed wave file collection (100 wave files of general type: vehicles,
explosions, animals, machines, effects, instruments)

• 1/4 inch stereo cables

The system specifications:

• 8 concurrent 3D sources at 44kHz sample rate

• 16 concurrent 3D sources at 22kHz sample rate

• 4 concurrent 3D sources with 6 reflections each at 44kHz sample rate

• full pitch shift control for all sources

• 1 486 100Mhz host CPU

• 4 Motorola 56001 DSPs, running at 40Mhz each

• Maximum system update rate: 44Hz

• Input: 64 x oversampled, 16 bit A/D converters

• Output: 8 x oversampled, interpolating filters

• Stereo crosstalk: 100Hz-100dBV, 1kHz-80dBV, 10kHz-60dBV

Acoustetron II User’s Guide 13

Installation

Hardware

Follow these steps to setup and test your Acoustetron II:

1. Connect the Acoustetron II outputs to the Symetrix headphone amplifier using the
supplied 1/4 inch stereo cables, connect a pair of headphones to the headphone
jack on the headphone amplifier, connect the Acoustetron II to power, connect the
monitor and keyboard to the Acoustetron II (both power and monitor cables
connect to the back of the Acoustetron II), and power up the system: after system
bootup you should see a menu appear that asks you to make a choice.

2. Select "run Menus" followed by "run local demo program" to test the server. You
should hear a demo running on your system. If you can see the tumbler spinning
on the screen, but there is no audio, check the connection from the Acoustetron II
to the headphone amp, and from the headphone amp to the headphones. If there
is no tumbler, advance to the next chapter on startup problems.

3. If you hear the demo, your server is functioning properly. Now, reboot the server
and let the system select all its defaults. After bootup, you should hear a double
beep and see a message on the monitor that shows the Acoustetron II is ready and
waiting.

4. Next, connect the Acoustetron II to your client system (PC, SGI, SUN, or HP) via
the serial cable that was provided for your specific system. On the server end, the
serial cable will fit the COM1 connector, on the client end, the default serial port is
port number one (COM1 on PC systems, TTYD1 on UNIX systems). To select a
different serial port, please refer to the environment variable section. If you are
using the ethernet option, connect the server to your network using one of the
three types of connectors found on the network card on the back of the server.
Then use the menu to enter the network card connection type and the server's IP
address. Ask your system administrator to provide you with this address.

5. Install the Acoustetron II client software onto your client system (from floppy disk
switch to floppy drive and type install for instructions, from DAT, or 1/4 inch
tape, use tar command to extract software).

6. To test the client/server connection move to the CRE/bin directory on your client
system and type demo or test to start up a demo sequence that is controlled from
your client system.

14 AcoustetronII User’s Guide

7. If your Acoustetron II successfully initializes and plays sounds, your system is
installed and ready to use. If the Acoustetron II is not responding correctly please
proceed to the next section on startup problems.

Startup problems

Your local demo program does not produce sound and does not start properly (no
spinning tumbler on the screen):

either your server environment variables, PC startup files (config.sys and
autoexec.bat,) or DSP card address switches have been changed. A call to
the factory is your best bet.

Your local demo program does not produce sound but there is a tumbler:

the server is up and running and very likely producing sound. The problem
must be in the audio connection between the server and your ears. Check all
connectors and make sure the headphone amp is powered on.

The server runs in local demo mode, but does not respond to the client:

The communication link is most likely the problem.

Serial communication link:

Make sure both ends are at the same baudrate (see chapters on Startup
menus and Environment variables for details). On UNIX systems, the client
software expects a serial port to be set to OFF and 9600 baud. A typical line
in the /etc/inittab file (which contains the serial port setup information)
on your UNIX system might look like this:

t1:23:off:/sbin/getty -N ttyd1 co_9600

Ethernet communication link:

Check the physical network connection. Have your system administrator test the
IP address that was provided to you. This address should appear at the top right
of the server's console. Reenter the physical network connection type using the
server's menus. Use the 'ping' program on the client machine to see if the server
responds.

Acoustetron II User’s Guide 15

Client software and directory organization

• Figure 3 CRE directory organization, UNIX client.

Directory File Description
Utility to list wave file directory on Atron II
Utility to download wave file to Atron II
Utility to delete wave file from Atron II
Utility to playback a wave file on Atron II
An X windows based sample application
A very simple example program
Demonstration program

cre listAtron
downloadAtron
deleteAtron
playAtron
audioClient
example
demo

tools

Makefile
deleteAtron.c
downloadAtron.c
lengthAtron.c
listAtron.c
playAtron.c
uploadAtron.c

test

Makefile
demo.c
stresstest.c
test.c

include
all CRE header filescre_tron.h

atron.h
...

lib

Source code - switching API
Source code - main library for serial server
Source code - serial driver
Source code - main library for ethernet server
Object library
Makefile to build libCRE.a

cre_api.c
cre_client.c
cre_serial_io.c
aio_client.c
libCRE.a
Makefile

bin

Makefile to build test programs
Source code for test programs

Makefile to build utility programs
Source code for utility programs

"
"

"
"
"
"
"

16 AcoustetronII User’s Guide

Problems

Technical support

If you are having difficulties with the operation of your Acoustetron II, be sure to
review the Installation procedure described earlier.

If you can’t solve your problem, you should contact technical support at Crystal
River Engineering, at the address or phone numbers listed in the inside front page of
this manual. Please be sure to have available as much as possible of the following
information:

• Acoustetron II software version

• if possible, example code that allows us to reproduce your problem at the
factory

Repair

Before returning faulty equipment or media for service, you first need to obtain
authorization from Crystal River Engineering or from your distributor.

Bugs

Please report suspected or confirmed software problems to Crystal River
Engineering, at the e-mail address or phone numbers listed in the inside front page
of this manual. It is essential that you include a complete description of the
problem, in sufficient detail that we can reproduce it.

Acoustetron II User’s Guide 17

Chapter 3 Using the Acoustetron II

System start up

On startup, the Acoustetron II system performs a number of self-tests, and then
boots up the server. It is useful to talk about two different modes of operation for
your Acoustetron II: development or playback . During development of an application,
the server should be connected to its monitor and keyboard, in order to make
several options and run-time information accessible to the developer. Once an
application is developed, and the Acoustetron II is used for run-time playback only,
it can be run stand-alone without the need for a monitor or keyboard.

Development usage

On boot-up of the system the following menu is displayed for a short while:

Please make a choice (you have 5 seconds before the default
gets selected, press b key to backup to previous menu)

1. run Acoustetron II server in default mode
2. run Menus
3. exit to DOS

If the ethernet option is installed the menu will be slightly different:

Please make a choice (you have 5 seconds before the default
gets selected, press b key to backup to previous menu)

1. run Acoustetron II server in ETHERNET mode (default)
2. set Acoustetron II IP address
3. change ethernet connection type (TP, COAX, BNC)
4. run Acoustetron II server in SERIAL mode
5. run Menus
6. exit to DOS

18 AcoustetronII User’s Guide

If you don't type anything, choice number 1 gets selected, and the Acoustetron II
server starts up waiting for communications from the client, ready to render sounds.
Once the server is running, a few keyboard commands can be issued to control it:

SPACEBAR toggles the console display from a static screen to a screen that
shows all on-going communication between the client and server (on start-up it is
set to static). Please note that printing updates to the screen slows down the
framerate of the Acoustetron II.

ESCAPE KEY will restart the server without rebooting the entire system.

'Q' KEY exits the server executable and returns you to the main menu. Once there
you can select #3 to get to a DOS prompt.

To change the serial link baudrate for the default startup mode, quit to the DOS file
system, change to the C:\CRE\ATRON directory (type 'cd \cre\atron'), and edit the
file GO.BAT (type 'edit go.bat'). The lines starting with atronbmp.exe and
atronars.exe contain /b384 to select a baud rate of 38400. Change the value to /b96,
/b192, or /b1152 for 9600, 19200, or 115200 baud respectively. Save the file and quit
the editor.

If you select "exit to DOS" in the main menu, the Acoustetron II will quit and allow
you to access its DOS file system. Typing 'start' at the command prompt from any
directory will start up the menus again.

If you select "run Menus", the following menu will appear:

Please make a choice (you have 5 seconds before the default
gets selected, press b key to backup to previous menu)

1. run Acoustetron II server
2. run local demo program
3. run local test program
4. run wave file development program

(only if option installed)

Selection '2' will start up an AudioReality demo sequence.

Selection '3' will start up the BMP1TEST program (see the chapter on "Test
programs" below for description).

Selection '4' will start up the optional wave file editing package (see separate
documentation for this option).

Acoustetron II User’s Guide 19

Finally, choice '1' allows you to start up the server using via serial communications
at a non-default baud rate:

Please select the baudrate at which you want to run the server
(you have 5 seconds before the default gets selected, press b
key to backup to echo previous menu)

1. run server at 9600 baud
2. run server at 19200 baud
3. run server at 38400 baud
4. run server at 115200 baud

Run-time usage

To use your Acoustetron II with an existing application, simply connect the client
and server systems and connect all audio equipment (headphone amp, cables,
headphones). The monitor and keyboard are not necessary for operation, since the
system can simply be powered up, and is ready to be accessed from the client after a
dual beep has been emitted by the Acoustetron II.

20 AcoustetronII User’s Guide

Test and example programs

Once hardware and software installation is complete, you may test the Acoustetron
II system in a number of ways:

demo

The demo sequence can be started from both the server and the client end. It serves
as a verification of server functionality.

stresstest

A test program available on your client system. It will start up eight sounds that are
pre-installed on your Acoustetron II system, and will spin them around the listener's
head randomly until the program is stopped (CTRL-C).

example

A very simple client example program that moves a sound around in space. This
program is a good place to look for a simple code sample to get you started on
writing your own Acoustetron II applications.

bmp1test

This program is available on the server only, and can be selected from the startup
menu on the Acoustetron II ("local demo test program"). It allows you to test the
Acoustetron II locally, independent of a client system that is connected to it.

The program places a listener at the origin of a virtual world, and revolves several
audio sources around the user's head. Sounds can be created externally or through
wave playback. BMP1TEST includes help screens and displays graphical feedback.

When started, the program will display several status messages as it auto-detects for
DSP cards and downloads program code and filter coefficients to the card. Once the
program starts up, you should see a continuously updated status message showing
the current position of source #0:

#0 (aaaa) < xxxxx, yyyyy, zzzzz> 0.0 dB

where aaaa is the azimuth angle (in degrees) to the source and xxxxx, yyyyy, zzzzz
specify its front–back, left–right, and top–bottom coordinates (x,y,z) (in inches),
respectively. Initially, the source moves about in a 20-in. horizontal orbit, at ear
level (z=0) (refer to Figure 4 for a picture of the coordinate system).

Acoustetron II User’s Guide 21

The help screen (displayed when pressing the 'h' key) lists a number of single-
keystroke commands which move the orbit up or down, or closer or further away,
make it slower or faster, change its direction, or pause its movement. You can also
raise or lower the output level for the current source, and you can cycle through all
available sources (by typing TAB).

If you supply a “live” source connected to the IN jack at the rear of a card (be sure to
make this connection with the power off), the Left channel will be spatialized as
source #0, and the Right channel will be source #1.

Another help screen appears when the 'F1' key is pressed. It explains the playback
of wave files.

Application programs

The following sample application is provided on UNIX platforms:

audioClient

If running X Windows with the Motif widget set, the audioClient program can be
used to verify the functionality of your Acoustetron II. Once started on the client, it
presents a graphical user interface, and a two dimensional graphical representation
of the listening space, that allow you to load wave files, play them, and move the
sounds and the listener around in a space that includes sound reflecting walls.

22 AcoustetronII User’s Guide

Downloading wave files and other utility programs

Several utility programs are provided on the client system (see Software and
directory organization in Chaper 2).

• downloadAtron: this utility, if invoked with one or more arguments,
downloads wave files (specified by arguments) from the client system to the
Acoustetron II server.

NOTE: the wave files MUST be 8 or 16-bit, mono, 44,100 or 22,050Hz sample
rate. The only recognized format is .WAV, any files ending in other extensions
are assumed to be raw data. In addition, Acoustetron II file names can only be
EIGHT CHARACTERS LONG, with a 3 character extension. downloadAtron
will truncate any names longer than 8 characters and automatically append a
.wav at the end.

• listAtron: prints out a listing of the wave files currently stored and available
on the Acoustetron II server. NOTE: when using the ethernet option use the
dirAtron utility program instead.

• deleteAtron: this utility expects a filename of a wave file stored on the
Acoustetron II, and deletes that file.

• playAtron: this utility expects a filename of a wave file stored on the
Acoustetron II and a gain value (default is 0 dB), and plays the file back once.

There are additional utility programs that work with the ethernet option only.

• uploadAtron: this utility, if invoked with one or more arguments, uploads
wave files (specified by arguments) to the client system from the Acoustetron II
server.

• dirAtron: similar to the listAtron program, this utility prints out a list of files
that are currently stored on the Acoustetron II server. In addition to the filename
this utility will also show the size of each file in bytes.

• getserverstats: displays the server's current status which includes the
server software version number, number of sources, a counter that is
incremented each time one of the sound cards generate an interrupt, and a
counter that is incremented each time a bad UDP packet is received.

• getserverlog: displays a log of all commands that the server received from
the client.

Acoustetron II User’s Guide 23

Environment variables

The Acoustetron II server can be controlled using the following (optional)
“environment variables” on the client system:

Variable Description Default (if not set)

TRONCOM selects communication parameters 1@384,30

TRONDEV overrides the serial port device name /dev/ttyd1 (UNIX)

COM1 (PC)

The TRONCOM variable needs to be set if you want to operate your Acoustetron II
on a different setting than serial port 1, at 38400 baud. The syntax is as follows:

setenv TRONCOM x@yyy,zzz

where x is the serial port number (TTYDx or COMx), yyy the baudrate divided by
100, and zzz the time-out period (the amount of time the client will wait for a
response from the server on an init() call).

The TRONDEV variable is optional and only needed if your client system's serial
port has a different descriptor than the defaults. For example,

setenv TRONDEV /dev/ttya

sets the serial port device to TTYA from TTYD1.TRONDEV will override the port
number defined by TRONCOM the variable.

When using the ethernet option the TRONDEV environment variable is not used
and the TRONCOM has no default. It must be set to the IP address of the
Acoustetron II server. For example,

setenv TRONCOM 206.119.89.168

or

setenv TRONCOM <hostname>

Acoustetron II User’s Guide 25

CRE_TRON Software interface

Overview

CRE_TRON is a 3D audio programming interface that was developed by Crystal
River Engineering to facilitate the creation of interactive three dimensional
AudioReality sound spaces.

The goal of the CRE_TRON API is to allow a user or developer to build up a sound
space using the concepts of physical reality without having to know about the
underlying algorithms, implementation or audio hardware.

This API implements the concept of a sound space in the form of easy-to-understand
objects. Objects include sound emitting sources, sound reflecting surfaces, and
sound receiving listeners. Sounds get created by sources, such as a ringing phone,
propagate through space, bouncing off passive objects such as walls, and finally
reach a listener's ears, where they are received and interpreted.

The C function calls listed below are used to write programs to control the
Acoustetron II. They are described in detail in the “CRE_TRON Function
Reference”. A good place to start programming is by expanding on the demo.c
example code in the CRE/TEST directory.

The function calls that allow a programmer to interact with the Acoustetron II can
be grouped into the following categories:

• Utility functions that initialize, update, and close the hardware, declared in
CRE_TRON.H:
cre_init (driver, head, sources, mode);
cre_update_audio ();
cre_close (driver, head);

• Function that defines the position of the listener’s head, declared in
CRE_TRON.H:
cre_locate_head (id, hloc);

• Functions which allow for the definition, positioning, and amplification of sound
sources, declared in CRE_TRON.H:
cre_locate_source (id, sloc);
cre_amplfy_source (id, dB);

• Propagation medium specific functions, declared in CRE_TRON.H:
cre_define_medium (prm, pts, data);

26 AcoustetronII User’s Guide

• MIDI-related functions, which allow for interaction with MIDI devices in the form
of MIDI streams and commands, declared in CRE_MIDI.H:
cre_send_midi (src, midistr);

• Functions for opening, playing, and closing sampled soundfiles (wave forms),
declared in CRE_WAVE.H:
cre_open_wave (wavefile, mode);
cre_ctrl_wave (src, wave, cmd, data);
cre_close_wave (wave);

• ARS (acoustic room simulation) functions, declared in ARS3.H. Please note that
these functions are only supported by the ARS3 driver:
ars_amplfy_surf (int surf, float dB);
ars_apply_matl (int matl);
ars_locate_box (float x, float y, float z,

float sizeX, float sizeY, float sizeZ);
ars_lock_box (int mode);

Sample rates and driver selection

The Acoustetron II can run multiple software drivers. Each driver implements the
CRE_TRON software interface, but might offer different functionality (see the
description of cre_init() function call for specific driver details). One of the
important distinctions between drivers is the sample rate at which they will run the
hardware:

• 44,100 Hz: the sample rate of CDs. Advantage: highest possible quality for audio
and spatialization. Disadvantage: highest level of computation.

• 22,050 Hz: the sample rate common in multimedia titles and video games.
Advantage: the lower bandwidth and storage requirements increase the number of
possible concurrent sounds. Disadvantage: both audio and spatialization quality are
reduced (most spatialization information is encoded in high frequencies which get
cut off when going from 44kHz to 22kHz).

Different drivers get selected at start-up time by one of the parameters of the
cre_init() call.

Please note that independent of driver sample rate, both 22kHz and 44kHz wave
files can be played back.

Acoustetron II User’s Guide 27

Example code

#define SourceID 0
#define HeadID 0
#define Sources 2
#define WaveFile "TEST.WAV"
#define PanLimit 100.0

void main(void)
{

float step = -0.05;
float SrcLoc[6] = { 10.0, PanLimit, 0.0, 0.0, 0.0, 0.0 };
float HeadLoc[6] = { 0.0, 0.0, -10.0, 0.0, 0.0, 0.0 };
wavFt *wave;

/* initialize two Tron sources, with verbose report */
if (cre_init(Atrn_BMP3, HeadID, Sources, 0) < Ok) return;
{

/* amplify source 0 - default is GAIN_dB_OFF (inaudible) */
cre_amplfy_source(SourceID, GAIN_dB_ON);

/* open WAV file and load wave form using all buffers */
if (!(wave = cre_open_wave(WaveFile, 0))) {

printf("\nwave load error.");
return;

}
/* play open wave form as SourceID with repeat loop */
cre_ctrl_wave (SourceID, wave, WaveCTRL_LOOP, NULL);
/* locate listener once (not moving) */
cre_locate_head (HeadID, HeadLoc);

while(!kbhit()) {
SrcLoc[AtrnY] += step; /* move source location */
if ((SrcLoc[AtrnY]<-PanLimit) || (SrcLoc[AtrnY]>PanLimit))

step = -step; /* reverse panning direction */
/* set new location as location of source 0 in space */
cre_locate_source(SourceID, SrcLoc);
cre_update_audio(); /* flush all changes to DSP */

}
/* stop wave form playback and detach from SourceID */
cre_ctrl_wave(SourceID, wave, WaveCTRL_STOP, NULL);
cre_close_wave(wave); /* close waveform */

}
cre_close(Atrn_CLOS, HeadID); /* close Tron */

}

The example program listed above is a “minimal” program which initializes the
Acoustetron II, loads and plays a wave file, turns on a single source to be used,
positions a listener in space, moves a source between two points in space, and
“displays” the sound space by updating the hardware.

28 AcoustetronII User’s Guide

The cre_init() call will locate and initialize sufficient hardware to spatialize two
sources, locate the listener’s head at the origin, and locate a sound source 50 inches
directly in front of the head (by default). Since no units are specified, locations will
be interpreted in inches, the default units. The HeadLoc variable therefore refers to
a position 10 inches below the origin. The source is by default a uniform radiator.

After successful initialization, the call cre_amplfy_source() turns source #0 on.
Note that all sources are initialized with no amplification. In order to hear anything
from a source after initialization, cre_amplfy_source() must be used.

The cre_open_wave() and cre_ctrl_wave() calls are used to load a wave
form from disk and play it.

The listener is located once to move from the default position to the one specified by
HeadLoc.

Then the program moves the location of source #0 using cre_locate_source(),
and uses cre_update_audio() to flush all changes to the hardware, in order to
display the new sound space for the listener, until any character is typed, at which
point the hardware is closed.

Acoustetron II User’s Guide 29

Coordinate system

The environment in which spatialized sounds can be experienced is described by a
three-dimensional coordinate system. Within this coordinate system, six-
dimensional vectors are used to specify the position and orientation of the listener’s
head and of all sound sources. The inputs to the Acoustetron II (external or wave
forms) are mapped to the corresponding locations in the coordinate system relative
to the listener’s location.

The Acoustetron II software library represents a six-dimensional location vector as
an array of six floats (32-bit floating-point number) In this array, the first three
elements specify the x, y, and z position in space, in number of “units” (units are
selected at initialization of the Acoustetron II—see cre_init()). The second three
vector elements specify the yaw, pitch, and roll, in radians. They define the
orientation of the source or head at position (x,y,z).

The coordinate system is adopted from the vehicle dynamic simulation world. As
illustrated in Figure 4, the system is right-handed, with the positive x-axis straight
ahead and the positive z-axis ascending vertically. Orientations are specified as
right-handed radian Euler rotations, roll, pitch, and yaw, about respective x, y, and z
axes. The six-element vector employed in the Acoustetron II software (in using
cre_locate_head() and cre_locate_source()) is ordered
< x, y, z, yaw, pitch, roll>. The order of rotations depends upon the rotation basis.
With respect to the global coordinate system, from a local coordinate system that
initially coincides with the global one, an object is rolled, pitched, yawed, and finally
translated.

30 AcoustetronII User’s Guide

• Figure 4 Six-dimensional coordinate system with listener located at
(0, 0, 0, 0, 0, 0).

+z

+x +y

+roll

+yaw

+pitch

Head tracking

Closed-loop tracking of head position can provide an important enhancement to
real-time audio spatialization. Software applications using Acoustetron II libraries
work well with many six-degree-of-freedom tracking systems, including Fakespace
Labs’ BOOM™ integrated tracker / head-coupled stereo display and popular
electromagnetic devices such as Polhemus Navigation’s Isotrak™/Fastrak™

/InsideTRAK™ 3SPACE® tracker and Ascension Technology’s Flock of Birds™

multiple-receiver system. There is no direct software support for tracking devices in
the Acoustetron II libraries.

Acoustetron II User’s Guide 31

Audio sources

Sound files

Each Acoustetron II can playback and spatialize up to eight monophonic sound files
at a time when sampling at 44,100Hz, or 16 wavefiles when sampling at 22,050Hz.
In order to play multiple sound files simultaneously, each sound file must be
assigned to a different spatialization source.

Before a sound file can be played, it has to be loaded onto the Acoustetron II, either
by using the downloadAtron utility from the client, or by loading it via the
Acoustetron's floppy drive to the c:\cre\waves directory. Once a wave file is
loaded, it can then be used in an application using the cre_open_wave() and
cre_ctrl_wave() commands.

If you wish to play the same sound file simultaneously on multiple sources, you must
open that sound file multiple times as well.

The maximum length of a sound file is limited only by the size of the hard disk,
since files get automatically played back from disk when playback memory is
exhausted. If you hear stuttering (gaps) in the wave file playback, the system
bandwidth has reached its limit, and too many files are being started at the same
time.

If a sound file’s name ends with “.WAV”, it must be formatted as a "RIFF" file format
(per Microsoft Multimedia specifications). WAVE files can be created on the server
using the Wave File Editing option available for the Acoustetron II, or using other
sound recording and editing tools and downloading the sounds from the client.

32 AcoustetronII User’s Guide

External inputs

The Acoustetron II can spatialize up to eight sounds that are connected via live
inputs. The external inputs can take their data from microphones, CD players, or
other sources of analog audio. The physical connectors can be found on the rear
panel of the Acoustetron II. Each of the four DSP cards has an 1/8 inch stereo input
connector labeled IN. The left and right lines of these connectors map to
spatialization channel id's in the following way:

BOARD NUMBER INPUT

LINE

SPATIALIZATION CHANNEL ID

ARS3 44kHz BMP3 44kHz BMP2 22kHz

0 (top) left

right

 0 0 0

 1 1

1 (second from top) left

right

 1 2 6

 3 7

2 (second from bottom) left

right

 2 4 12

 5 13

3 (bottom) left

right

 3 6 18

 7 19

In addition, the AUX connector on each board can be used to mix in stereo signals
with the spatialized sound output of the Acoustetron II (however, mixing of
spatialized and non-spatialized sounds is not recommended).

The OUT connectors should not be used.

Acoustetron II User’s Guide 33

Special topics

Atmospheric absorption

The Acoustetron II includes an “atmospheric absorption” model which attenuates
higher frequencies a greater amount than lower frequencies. The degree of
attenuation depends on the distance through which the sound travels in the
atmosphere—the further it travels, the greater the relative attenuation. As a result,
distant sounds have a lowpass-filtered, or “muffled” characteristic.

This model is controlled by a “distance” parameter. For sounds which are close to
the listener, as compared with the absorption distance, the relative high-frequency
attenuation will be slight. Conversely, sounds whose range is equal to or greater
than this distance will incur correspondingly more high-frequency attenuation.

The atmospheric absorption distance can be accessed and adjusted or disabled from
its default through the cre_define_medium() function.

Spreading loss roll-off

As sound waves radiate from a point source, their power spreads over an ever-
increasing volume of propagation medium. This spreading reduces the sound
pressure level as the sound propagates from the source position to the listener
position.

The effect of this “spreading loss roll-off” is governed by an exponential curve
which scales a sound’s apparent power by the inverse of the sound’s distance raised
to an exponent. In a perfect model, this exponent is 1.0, but anechoic simulations
may need some adjustment to sound “right.”

The exponential factor for all sources may be examined and adjusted from its
default value through the cre_define_medium() function.

34 AcoustetronII User’s Guide

Acoustetron II User’s Guide 35

Chapter 4 CRE_TRON Function
Reference

Data structures

wavFt

The waveform structure and typedef are provided for the application developer to
have detailed information on open wave forms, for the purpose of computing useful
estimates such length of play. All members are read-only.

typedef struct wavFs {
const char *fname; /* host soundfile filename */
void *pSignal; /* pointer to the signal buffers */
struct wavFs *next; /* linked-list pointer for user */
struct wavFs *synch; /* synchronize with this signal */
int diskBased; /* TRUE if file still open */
double sampleRate; /* in Hz; assumes 44.1kHz */
short numChannels,/* 1 = mono; 2 = stereo */

sampleSize, /* in bytes: 1=8-bit, 2=16-bit */
frameSize, /* in bytes: samplesize*channels */
waveId, /* remote serial identifier */
sourceId; /* value = -1, if not attached */

float pitchFactor;/* pitch shift factor */
unsigned long

numFrames, /* total frames in file */
remFrames, /* # remaining frames NOT loaded */
selFrames, /* length of signal selection */
startFrame; /* beginning of signal selection */

unsigned long
loopStart, /* loop start, in samples */
loopEnd, /* loop end, in samples */
loopCount; /* loop count */

} wavFt;

36 AcoustetronII User’s Guide

MEMBERS:
fname - host sound filename string with full path.
pSignal - pointer to waveform signal data (internal use only).
next - pointer to next waveform struct (for application use).
synch - pointer to waveform that this wave will synchronize with.
diskBased - Boolean; non-zero indicates that file is open.
sampleRate - sample rate of the sound signal in samples per second.
numChannels - number of signal channels; 1 = monoaural, 2 = stereo.

 Currently, only supports monoaural.
sampleSize - bytes per sample; 1 = 8-bit, 2 = 16-bit. Promotes 8-bit RIFF

files to 16-bit playback. Non-RIFF files are assumed 16-bit.
frameSize - bytes per frame; frame = sampleSize * numChannels.
waveId - unique index assigned for remote client/server packets.
sourceId - index of associated source; -1 = unassigned.
pitchFactor - factor by which wave gets pitch shifted
numFrames - total frames in the signal data.
remFrames - unloaded frames remaining on disk.
loopStart - starting point for looping in samples.
loopEnd - ending point for looping in samples.
loopCount - number of times through the loop.

Currently, the following members are not being used:
selFrames - length of selected signal.
startFrame - index of beginning frame in selection.

Acoustetron II User’s Guide 37

Program routines

ars_amplfy_surf

Syn
op
sis

#include "cre_tron.h"
int ars_amplfy_surf (int surf, float dB);

De
scri
pti
on

Amplifies or attenuates the dynamic range over distance of the indicated
passive surface surf by dB decibels.
Note: this call is only supported by the Atrn_ARS3 driver.

Par
am
ete
rs

surf the index (from zero) of the surface to be amplified. Selected
from enum list in CRE_ARS3.H:

enum {
SURF_FRONT, SURF_RIGHT, SURF_BACK,

SURF_LEFT, SURF_CEILING,
SURF_FLOOR };

dB the amplification in decibels. The macro GAIN_dB_OFF is
provided to definitively shut off a surface. GAIN_dB_ON is 0
dB. Any value less than -120 dB is interpreted as off.

Ret
urn
Val
ue

On success Ok

Exa
mp
le

ars_amplfy_surf(SURF_FRONT, GAIN_dB_ON);

38 AcoustetronII User’s Guide

ars_apply_matl

Syn
op
sis

#include "cre_tron.h"
int ars_apply_matl (int matl);

De
scri
pti
on

Applies an acoustic material with reflection and transmission properties to all
surfaces. Materials are selected from a palette of empirically measured material
filters.
Note: this call is only supported by the Atrn_ARS3 driver.

Par
am
ete
rs

matl the material to be applied. Selected from enum list in
CRE_ARS3.H:

enum {
MATL_ANECHOIC, MATL_MIRROR,

MATL_TEXTILE, MATL_PLYWOOD,
MATL_GLASS,

LAST_MATERIAL
};

Note: anechoic walls are perfect absorbers, they do not reflect
any sound. However, the box geometry is still active (sounds
can move outside the box).

Ret
urn
Val
ue

On success Ok

Exa
mp
le

ars_apply_matl(TEXTILE);

Acoustetron II User’s Guide 39

ars_locate_box

Syn
op
sis

#include "cre_tron.h"
int ars_locate_box (float x, float y, float z,

float sizeX, float sizeY, float
sizeZ);

De
scri
pti
on

Locates all the surfaces (walls) of a room to simulate the effects of first order
sound reflections off of the walls. Sounds that are located outside the
boundaries of the box are muffled by transmission loss filters.
Note 1: all walls are orthogonal (the room is a box).
Note 2: this call is only supported by the Atrn_ARS3 driver.

Par
am
ete
rs

x, y, z the x, y, and z location of the center of the room.
sizeX, sizeY, sizeZ

length, width, and height of the room.

Ret
urn
Val
ue

On success Ok

Exa
mp
le

float x, y, z, sizeX, sizeY, sizeZ;
x = y = z = 0.0;
sizeX = 200.0; sizeY = 180.0; sizeZ = 120.0;
ars_locate_box (x , y , z, sizeX, sizeY, sizeZ);

40 AcoustetronII User’s Guide

ars_lock_box

Syn
op
sis

#include "cre_tron.h"
int ars_lock_box (int mode);

De
scri
pti
on

Locks the box to the listener's position. The listener is always located at the
center of the room. The listener's orientation does not affect the box's
orientation.
Note: this call is only supported by the Atrn_ARS3 driver.

Par
am
ete
rs

mode LOCK_ON or LOCK_OFF, turns locking on or off.

Ret
urn
Val
ue

On success Ok

Exa
mp
le

ars_lock_box (LOCK_ON);

Acoustetron II User’s Guide 41

cre_amplfy_source

Syn
op
sis

#include "cre_tron.h"
int cre_amplfy_source (int id, float dB);

De
scri
pti
on

Amplifies or attenuates the dynamic range over distance of the indicated sound
source id by dB decibels. The default source gain (GAIN_dB_ON = 0 dB) is set
so that maximum possible volume is reached at a distance of 2.5 units from an
ear. Distant sound sources may need to be set much higher (as much as
+30 dB), in order to be audible at the listener’s position.

Par
am
ete
rs

id the index (from zero) of the sound source to be amplified. The
macro ALL_SOURCES is supported.

dB the amplification in decibels. The macro GAIN_dB_OFF is
provided to definitively shut off a sound source. Any value less
than -120 dB is interpreted as off.

Ret
urn
Val
ue

On success Ok

On failure Error0 - audio source id is out of range, or no Tron sources
have been initialized.

Error1 - dB is unreasonable. To prevent floating point
overflows dB should not exceed 20 *
EXPONENT_LIMIT, defined in ATRON.H.

42 AcoustetronII User’s Guide

Exa
mp
le

cre_amplfy_source(ALL_SOURCES, GAIN_dB_OFF);

Re
ma
rks

This is the most misunderstood function in the CRE_TRON API. Attenuation
over distance is a very important 3D cue, over which the system must have
dynamic range to apply. As a sound source gets closer to a receiver, its sound
pressure level must increase exponentially (nominally 6 dB for every half of the
distance), but there is a maximum volume that audio hardware can (and, for
safety reasons, should) reach. We have set the library so that the maximum
volume is reached for a 0 dB at 2.5 inches from the receiver. If a source is within
this range, our software can provide very little distance cue. If the source is
mostly far-field (never comes near the receiver), you can optimize the dynamic
range by setting the gain to a higher value. A table relating source amplitude
setting to clipping distance may be found in ATRON.H.
If you need to adjust the relative amplitude of the source, that should be done at
the synthesis of the sound. cre_amplfy_source() will provide such relative
amplitude service, but you run the risk of ruining the 3D effect for near field
sounds.

Acoustetron II User’s Guide 43

cre_close

Syn
op
sis

#include "cre_tron.h"
int cre_close (int driver, int head);

De
scri
pti
on

Deallocates host and DSP resources for a given driver and listener (which may
then be reallocated with another cre_init() call). cre_close() will gently
shut off all audio. cre_close() does NOT automatically close all open wave
forms. cre_close() is required to safely terminate a host application.

Par
am
ete
rs

driver selected from enumeration list in ATRON.H (see
cre_init()). The enum Atrn_CLOS shuts down all CRE
drivers.

head the identifier of an initialized listener to be closed. The macro
ALL_HEADS will force all listeners associated with the given
driver to be closed.

Ret
urn
Val
ue

On success Ok

On failure Error0 - no Tron sources have been initialized.
Error1 - invalid driver type.
Error2 - uninitialized listener identifier head.

Exa
mp
le

cre_close(Atrn_CLOS,0);

44 AcoustetronII User’s Guide

cre_close_wave

Syn
op
sis

#include "cre_tron.h"
int cre_close_wave (wavFt *wave);

De
scri
pti
on

Closes the waveform wave by unpatching any DSP using it, closing its host file,
if open, and freeing the signal and the wave structure. If wave is attached to a
sound source and is playing, it will be stopped before the wave is closed. In
order to properly deallocate resources, each (successful) call to
cre_open_wave() must be balanced with a call to this routine.

Par
am
ete
rs

wave a pointer to the waveform structure to be closed.

Ret
urn
Val
ue

On success Ok

On failure Error1 - invalid wave structure.

Exa
mp
le

wavFt *wavep = cre_open_wave("TEST.WAV",4);
... /* listen to the music */
cre_close_wave(wavep);

Acoustetron II User’s Guide 45

cre_ctrl_wave

Syn
op
sis

#include "cre_tron.h"
int cre_ctrl_wave

(int src, wavFt *wave, int cmd, void *data);

De
scri
pti
on

Requests the host to control the waveform wave according to the command cmd,
which may be related to source src and may require the host to communicate
with the DSP associated with source src . The function is a generic dispatcher
that may be extended in future releases. See command descriptions below for
specific behavior.

Par
am
ete
rs

src the index (from zero) of the audio source in reference. The
macro ALL_SOURCES is not supported.

wave a pointer to the waveform structure affected by all commands
except WaveCTRL_STOP.

cmd one of the pre-defined command values from the wave_ctrl
enumeration:
 enum wave_ctrl {

WaveCTRL_RWND, WaveCTRL_STAT,
WaveCTRL_STRT, WaveCTRL_PLAY,
WaveCTRL_LOOP, WaveCTRL_PTCH,

WaveCTRL_STOP,
WaveCTRL_LPST,

WaveCTRL_FSTAT
};

data NULL, except for WaveCTRL_PTCH and WaveCTRL_LPST

46 AcoustetronII User’s Guide

CM
D
Typ
es

WaveCTRL_RWND

rewinds the current frame position of waveform wave to its first frame.
Rewind is useful if the waveform was stopped before finishing its full
selection.

WaveCTRL_STAT (see also cre_get_sources_playing())
tests current waveform wave status with respect to given source src.
Alternatively, this command can check wave for any source with src = -

1, or check src for any waveform with wave = NULL. cre_ctrl_wave()
generates a 4-bit return value, with each bit representing a state of

either wave or src:
bit 0 - waveform wave playing on source src's DSP.
bit 1 - waveform wave playing on some DSP.
bit 2 - source src's DSP playing some waveform.
bit 3 - source src playing some waveform.

A return of zero means that neither wave nor src are busy.
WaveCTRL_STRT

resets and plays waveform wave from its beginning, patching it
through to source src.
WaveCTRL_PLAY

plays waveform wave from its current frame position, patching it
through to source src.
WaveCTRL_LOOP

plays waveform wave from its current frame position with loop flag
enabled. When playback reaches the end of the sound file, the signal is
automatically rewound to its beginning. Looping continues, until the
playback is stopped (WaveCTRL_STOP), or the loop flag becomes

disabled (WaveCTRL_NOLP). See WaveCTRL_LPST for information on
setting loop points.
WaveCTRL_PTCH

sets the pitch shift factor pointed to by data (float *) for wavefile wave
(BMP2 and BMP3 drivers only). A value of 1.0 (default) results in no

pitch shifting, a value of 2.0 (maximum) will double the pitch of the wavefile,
a value of 0.5 (minimum) will half the pitch of the wavefile.
WaveCTRL_STOP

stops playing any waveform attached to source src, maintaining that
wave form's current frame position.

Acoustetron II User’s Guide 47

WaveCTRL_LPST

sets loop start, loop end, and loop count parameters. src is ignored,
data is a pointer to an array of three longs:

data[0] = loop start (unsigned long, in samples)
data[1] = loop end (unsigned long, in samples)
data[2] = loop count (signed long, -1 = infinte looping)

WaveCTRL_FSTAT

used to return wave file statistics. src anddata are ignored. The
following fields in wave will be updated after function exits:

sampleRate numFrames loopStart
diskBased fname loopEnd
sampleSize loopCount

Ret
urn
Val
ue

On success Ok, or bit code (see WaveCTRL_STAT)
On failure Error0 - audio source src is out of range, or no Tron

sources have been initialized.
Error1 - waveform structure pointed to by wave is invalid.
Error2 - command cmd is unsupported.
Error3 - DSP conflict, such as wave already playing on
other DSP.
Error4 - DSP error, such as failed attempt to perform

command.
Error5 - no interrupt enabled for given DSP.

Exa
mp
le

wavFt *wavep = cre_open_wave("TEST.WAV", 4);
cre_ctrl_wave(0, wavep, WaveCTRL_LOOP, NULL);
... /* do other things while sound plays */
cre_update_audio(); /* tend to playback buffers */
... /* do other things while sound plays */
cre_ctrl_wave(0, wavep, WaveCTRL_STOP, NULL);
cre_close_wave(wavep);

48 AcoustetronII User’s Guide

cre_define_medium

Syn
op
sis

#include "cre_tron.h"
int cre_define_medium (int prm, int pts, const void *data);

De
scri
pti
on

To allow the user to specify parameters defining the propagation medium
model (absorption filter distance and spreading roll-off exponent). The function
is a generic dispatcher that may be extended in future releases. See parameter
descriptions below for specific behavior.

Par
am
ete
rs

prm one of the pre-defined parameter values from the ATRNmedDef
enumeration:

enum ATRNmedDef {
AtrnROLLOFF, AtrnABSORBdist

};

pts the number of points to be read from the data pointer.
data a pointer to at least pts data points. An undetectable error will

occur if pts is larger than the number of points available to
read. The pointer can be NULL, in which case the first pts points
of the existing pattern table will be used.

PR
M
Typ
es

AtrnABSORBdist

Atmospheric absorption control distance. The absorption distance
controls the amount of extra high frequency fall-off over distance that is
applied to simulate atmospheric absorption. Currently, this parameter can
only be set globally, for all sources. The pts argument must be set to one
to have the float value pointed to by data set the distance in current units.
The pts argument may be zero or negative to reset the default value,
defined by the macro ABSORPTION_DISTANCE in ATRON.H. The effect of
the absorption filter can be minimized by setting the value to an arbitrarily
large distance. However, it can be disabled entirely by passing a value of 0.0 or
less.

Remarks: The given distance affects the amount of atmospheric
absorption filtering at a given source to receiver range by a factor of the
range divided by the sum of the range and absorption distance. Hence the
absorption filter will be applied at 50% when the range is equal to the
absorption distance.

Acoustetron II User’s Guide 49

AtrnROLLOFF

The roll-off exponent due to spreading power loss. The spreading roll-
off exponent parameter sets the rate at which sound amplitude is
attenuated over distance to yield cues in the third dimension. Currently,
this parameter can only be set globally, for all sources. The pts argument
must be set to one to have the float value pointed to by data set the
spreading roll-off exponent, or may be zero or negative to reset the default
value, defined by the macro SPREADING_ROLLOFF in ATRON.H. An
exponent value given that is out of range will return an error. The
exponent must be non-zero positive and less than the value defined by
the macro EXPONENT_LIMIT in ATRON.H.

Remarks: In a free sound field spreading loss is -6 dB per doubling of the
distance (gain proportional to 1.0 / R). However there are few free sound
fields in the real world, so the apparent spreading loss depends on the
propagation medium's acoustic impedance and elements in the sound field.
Since the Tron is only simulating a virtual anechoic environment, a nominal
roll-off exponent of 1.0 sounds steep. Typically, roll-off exponents in the
range of 0.5 - 1.2 are of interest.

Ret
urn
Val
ue

On success Ok.

On failure Error0 - no Tron sources have been initialized.
Error1 - invalid parameter prm.
Error2 - pts is non-zero, but data is NULL.

Exa
mp
le

/* distance in current units */
float absorb_dist = 100.0;
cre_define_medium (AtrnABSORBdist, 1, &absorb_dist);

50 AcoustetronII User’s Guide

cre_define_output

Syn
op
sis

#include "cre_tron.h"
int cre_define_output (int device);

De
scri
pti
on

To allow the user to select the appropriate audio output rendering device. See
the list under parameters below for supported devices. See section on "Output
devices" in chapter 2 for a discussion of different devices.

Par
am
ete
rs

device one of the pre-defined parameter values from the following
enumeration:

HEADPHONES - default. Use for headphone,
 nearphone, quad

speaker, and generic
stereo listening devices.

SPEAKERS_NARROW - use this setting for multimedia
 speakers that are built into a

 monitor or monitor stand.
SPEAKERS_WIDE - use this setting for stand alone

 multimedia speakers that are
 located next to your monitor.

Ret
urn
Val
ue

On success Ok.

On failure Error0 - no Tron sources have been initialized.

Exa
mp
le

cre_define_output (HEADPHONES);

Acoustetron II User’s Guide 51

52 AcoustetronII User’s Guide

cre_get_sources_playing

Syn
op
sis

#include "cre_tron.h"
int cre_get_sources_playing (int *sources);

De
scri
pti
on

This call returns status information on all sources, as to whether they are
currently playing or stopped.
Note: this function call is more efficient than calling cre_ctrl_wave() with
the WaveCTRL_STAT command.

Par
am
ete
rs

sources an array of integers of length = number of initialized sources.
On return, sources[sourceId] = 1 if source sourceId is currently
playing, and sources[sourceId] = 0 if source sourceId is
stopped.

Ret
urn
Val
ue

On success Ok

On failure Error0 - audio source id is out of range, or no Tron
sources have been initialized.

Exa
mp
le

int sources[8];
cre_get_sources_playing (sources);

Acoustetron II User’s Guide 53

cre_init

Syn
op
sis

#include "cre_tron.h"
int cre_init (int driver, int head, int sources, int mode);

De
scri
pti
on

Computes, detects, and allocates resources (i.e., Trons and host memory) to
provide the services specified by driver to listener head for the requested
number of sources. The DSP driver is loaded from the host to the resourced
hardware and booted. All host and DSP memory is initialized with reasonable
values. The listener's head is located at the origin. All sound sources are
initially positioned at the full RESPONSE_DISTANCE (radius of actual HRTF
responses given in ATRON.H) in front of the listener's head.
Important: All gains are initially set by cre_init() to GAIN_dB_OFF. This is
so that, if an analog input is currently active at full level, it will not "pop" on
without user control. The programmer MUST make use of the
cre_amplfy_source() function to enable the user to hear Tron output after
initialization.

Par
am
ete
rs

driver driver selected from enum list in ATRON.H:

enum ATRNdrv {
Atrn_ARS3, - ARS3.LOD 4-src 44khz room simulation
Atrn_BMP2, - BMP2.LOD 16-src 22khz, Doppler
Atrn_BMP3, - BMP3.LOD 8-src 44khz, Doppler

};

head listener identifier to be initialized. An identifier must be
unique for each listener and can be any integer from 0 to 63.
If the listener identifier has been previously initialized, the
requested sources are additional.

54 AcoustetronII User’s Guide

sources total number of sources heard by the listener’s head.
mode bit field “ORed” from ATRON.H macros and enums:

units—select one from enum list:
enum ATRNunits {

AtrnINCHES, Atrn_FEET_,
AtrnMMETER, AtrnCMETER,
Atrn_METER

};

Ret
urn
Val
ue

On success returns the number of sources allocated.
On failure Error0 - no sources requested, no hardware available, or

Trons already initialized.
Error1 - memory allocation error or DSP binary load failure,

see cre_error() for detailed failure.
Error2 - incompatible or invalid DSP binary loaded.
Error3 - acoustic headmap invalid or load failure.
Error4 - invalid driver type.
Error5 - invalid listener identifier.
Error6 - server response error.

Exa
mp
le

if (cre_init(Atrn_CMP1,0,2,(AtrnCMETER | _VERBOSE_)) < Ok)
abort();

Re
ma
rks

An Acoustetron may be initialized only once, for a given listener. After a
successful initialization, all subsequent calls to cre_init() are ignored until a
cre_close() has been performed. Since all listeners share the same sound
space, the same number of sources must be requested for each head.

Acoustetron II User’s Guide 55

cre_locate_head

Syn
op
sis

#include "cre_tron.h"
int cre_locate_head (int id, const float *headLoc);

De
scri
pti
on

Locates the head of a listener six dimensionally in world coordinates. It only
updates changes from previous state, recalculating pinnae locations as needed.
This function does not affect DSP processing until a synchronization call to
cre_update_audio() is successful.

Par
am
ete
rs

id the identifier of a listener to be defined.
headLoc a pointer to an ordered array of six floats as follows:

AtrnX world x-axis coordinate.
AtrnY world y-axis coordinate.
AtrnZ world z-axis coordinate.
AtrnYAW angle of -π to π from the world x-axis about the

world z-axis of the projection of the head’s x-axis
onto the world x-y plane. Looking down at the x-y
plane a counter-clockwise rotation is positive.

AtrnPTC angle of -π/2 to π/2 from the world x-y plane of the
head’s x-axis about the world y-axis. Remember that
with x forward and z up, a positive pitch is down.

AtrnROL angle of -π to π from the world y-axis about the
world x-axis of the head’s y-axis. From the
listener’s point of view, a clockwise roll of the head,
rolls y into z and is therefore positive.

Ret
urn
Val
ue

On success Ok

On failure Error0 - no Trons have been initialized.
Error1 - headLoc is NULL.
Error2 - uninitialized listener identifier id.

Exa
mp
le

const float headLoc[6] = {10.0, 20.0, 30.0, 0.0, 0.0, 0.0};
cre_locate_head(2, headLoc);

56 AcoustetronII User’s Guide

cre_locate_source

Syn
op
sis

#include "cre_tron.h"
int cre_locate_source (int id, const float *sourceLoc);

De
scri
pti
on

Locates an audio source id six dimensionally in world coordinates. This
function does not affect DSP processing until a synchronization call to
cre_update_audio() is successful.

Par
am
ete
rs

id the index (from zero) of the audio source to be located. The
macro ALL_SOURCES is not supported. To co-locate audio
sources, one must manually call cre_locate_source() for
each of the coincident sounds.

sourceLoc a pointer to six floats in order as follows:
AtrnX world x-axis coordinate.
AtrnY world y-axis coordinate.
AtrnZ world z-axis coordinate.
AtrnYAW angle of -π to π from the world x-axis about

the world z-axis of the projection of the
source’s x-axis onto the world x-y plane.
Looking down at the x-y plane, a counter-
clockwise rotation is positive.

AtrnPTC angle of -π/2 to π/2 from the world x-y
plane of the source’s x-axis about the world
y-axis. Remember that with x forward and z
up, a positive pitch is down.

AtrnROL angle of -π to π from the world y-axis about
the world x-axis of the source’s y-axis.
From the source’s point of view, a
clockwise roll of the sound rolls y into z
and is therefore positive.

Acoustetron II User’s Guide 57

Ret
urn
Val
ue

On success Ok

On failure Error0 - audio source id is out of range, or no Tron
sources have been initialized.

Error1 - if sourceLoc is NULL.

Exa
mp
le

const float srcloc[6] = {-10.0, -20.0, 0.0, 0.0, 0.0, 0.0};
cre_locate_source (4, srcloc);

Re
ma
rks

Only the first three floats are used when the audio source is in uniform
radiation mode. However, as a safe programming practice, you should always
maintain pointers to six-element data structures. AtrnROL is not presently used
since non-uniform radiation is symmetric about the boresight roll axis, but it
should be maintained for future compatibility.

58 AcoustetronII User’s Guide

cre_open_wave

Syn
op
sis

#include "cre_tron.h"
wavFt *cre_open_wave (const char *wavefile, int mode);

De
scri
pti
on

Opens a sound file referred to by the filename wavefile from the Acoustetron
II's disk, returning a pointer to the allocated wavefile structure wavFt. Sound
file control, such as playback through a particular source, is effected through
cre_ctrl_wave(). Currently, the only formally recognized sound file format
is RIFF (MS Windows .WAV format). Note that independent of which driver
(22kHz, or 44kHz) is being used, both 22kHz and 44kHz wave files can be
opened and played back.
Note: Since cre_open_wave() dynamically allocates host memory and may
keep host disk files open, every cre_open_wave() should be paired with a
cre_close_wave(). Waveform open-close pairs are independent of
cre_init() - cre_close() pairs. The maximum number of concurrently
open wave files is 127 (see remarks below).

Par
am
ete
rs

wavefile a string which specifies the filename to be loaded from disk. If
the filename ends with “.WAV”, the file must have a valid RIFF
format header.

mode the amount of memory that is being allocated for the file in
32kbytes * mode. See remarks below for a discussion on
what mode values to use.

Ret
urn
Val
ue

On success wavFt* - the returned structure will be empty. See
cre_ctrl_wave(s, wave, WaveCTRL_FSTAT, NULL)
command to get structure filled in.

On failure NULL - filename wavefile not found, could not be
opened, was invalid, or system out of memory.

Acoustetron II User’s Guide 59

Exa
mp
le

char *fname = "test.wav";
wavFt *wave = cre_open_wave(fname, 2);
if (wave == NULL)

printf("%s failed to open.\n",fname);

Re
ma
rks

There are two fundamental ways to load a wave file: mode 0 which loads the
entire wave file into memory, or mode > 0 which loads mode*32kbytes of the
wave file into memory. During wave file playback, a mode 0 file will be played
straight from memory, whereas a mode > 0 file will be played back from hard
disk using the mode*32kbytes as playback buffers. Adjusting the mode
parameter to different values affects three areas of performance:
1. delay caused by open_wave command: the open command returns a
structure after opening and loading up the wave file. Since loading the data off
the hard disk takes some time, the higher the mode value, the longer
cre_open_wave() will take before it returns. The fastest possible open is about
30-40 milliseconds for mode values of 1, 2, 3, and 4. After that each additional
32kbytes takes another 5-10msecs to load, e.g. mode 8 would equal about
40msecs+4*7.5msecs=70msecs. Finally, mode 0 takes longest because it loads the
entire file, with the delay being approximately 100msecs + 25msecs for each
100kbytes of wave file length. For example, a 300kbyte long wave file will take
about 100msecs+3*25msecs=175msecs to open. A 3mbyte long file will take
about 100msecs+30*25msecs=850msecs.
2. number of open wave files: a base Acoustetron II system with 16mbytes of
memory, has 8.3mbytes available for opening wave files. If specifying mode 2,
the maximum number of wave files (127) can be fit into memory (127*64kbytes=
8.3mbyte). For mode 0, the size of all concurrently open wave files needs to fit
into 8.3mbytes. For other mode values the total size can be calculated
accordingly.
3. system frame rate during file playback: as mentioned above mode 0 files are
played back from memory, whereas all other modes play back from hard disk,
using memory for buffering (an exception would be if the number of buffers
specified by the mode parameter are big enough to hold the entire file, in which
case the open operation is equivalent to using mode 0). Mode 0 should be used
whenever possible because it reduces playback stress on the hard disk and the
system, and results in the highest possible frame rate and smoothest operation
of the Acoustetron II. Mode > 0 can slow the frame rate to a few Hertz in the
worst case (8 large mode 1 wave files playing all at once). The larger the mode
value the better the overall performance of the system. In general, if wave files
are dropping out or server response is sluggish, mode values need to be
increased.
Recommendations: Mode 0 should be used whenever possible, especially for
short wave files that don't take up a lot of memory. Mode 2 or 4 should be used

60 AcoustetronII User’s Guide

for very long wave files that can't fit into memory, and in cases where lots of
wave files need to be open concurrently, or when wave files need to be opened
very fast during execution of a real-time application (rather ythan pre-opening
everything during startup)

Acoustetron II User’s Guide 61

cre_send_midi

Syn
op
sis

#include "cre_tron.h"
int cre_send_midi (int src, const unsigned char *midistr);

De
scri
pti
on

Sends a string of MIDI commands midistr (terminated by MIDI_MsgTerm* as
defined in CRE_MIDI.H) to the MIDI port on the Tron card which is responsible
for source src. A well constructed MIDI string is assumed. See CRE_MIDI.H for
some pre-defined MIDI strings.

Par
am
ete
rs

src the index (from zero) of the audio source in reference. The
macro ALL_SOURCES is supported (same message is sent once
to each port, i.e., per pair of sources).

midistr a character string (of any length) of MIDI commands,
terminated by MIDI_MsgTerm.

Ret
urn
Val
ue

On success Ok
On failure Error0 - audio source src is out of range or no

Tron sources have been initialized.
Error1 - MIDI string midistr is invalid.

Exa
mp
le

MIDIbyte MyFavoriteNote[] = {0x90, 0x3C, 0x40, MIDI_MsgTerm };
cre_send_midi(1, MyFavoriteNote);

* The message terminator MIDI_MsgTerm is not sent to the port.

62 AcoustetronII User’s Guide

cre_set_dplr

Syn
op
sis

#include "cre_tron.h"
int cre_set_dplr (int id, float factor);

De
scri
pti
on

Directly sets the Doppler factor in DSP memory. The value ranges from 0.0 (no
Doppler) to 1.0 (default Doppler) to >1.0 (exaggerated Doppler).
Note: If a Doppler factor is set, the CRE_TRON library will automatically do the
appropriate velocity computations and pitch shifting to create the perception of
a Doppler effect. This has two important effects: only wave files get pitch
shifted or Dopplered, and the velocity computation is based on the assumption
that the host application which is making calls to the CRE_TRON library is
running at a frame rate of 30 frames/second. If the frame rate is higher/lower,
the Doppler effect needs to get exaggerated/lowered accordingly.

Par
am
ete
rs

id the index (from zero) of the source id to be set.
factor the Doppler factor based on 1.0 being the default. A factor of 0.0

disables Doppler computation for source id (this is useful for
stationary sounds, or if you want to do your own pitch shifting
(see cre_ctrl_wave())). A value bigger than 1.0 will
exaggerate the Doppler effect accordingly.

Ret
urn
Val
ue

On success Ok

On failure Error0 - Doppler index id is out of range, or no Doppler
resources are available.

Exa
mp
le

cre_set_dplr (2,3.5);

Acoustetron II User’s Guide 63

cre_update_audio

Syn
op
sis

#include "cre_tron.h"
int cre_update_audio (void);

De
scri
pti
on

Synchronizes and controls signal processing. This routine checks all TRON data
structures for updates since the previous call, recomputes convolution
parameters (such as relative source-to-head position and source audibility to
each ear) for all affected source-to-head relationships, and updates all the Tron
controls in DSP memory with any revised data. cre_update_audio()
should be called once every time you want the audio updated, usually once per
frame.
Note: cre_update_audio() should never be called more than 44 times per
second (the maximum update rate of the Acoustetron II).

Par
am
ete
rs

None

Ret
urn
Val
ue

On success Ok, even if all Trons were already up-to-date.
On failure Error0 - no Tron sources have been initialized.

Error1 - one or more Trons could not be interrupted to
perform an update.

Exa
mp
le

cre_update_audio();

64 AcoustetronII User’s Guide

Re
ma
rks

Synchronization Note: To maintain synchronization of audio processing in a
system in which more than one object (listener and/or sources) are moving
simultaneously, you should complete all necessary calls to
cre_locate_head() and cre_locate_source() before calling
cre_update_audio().

Other than MIDI and wave sound synthesis this is the only PC↔DSP interaction
after cre_init().
Because the Tron’s internal DSP audio parameters can be updated only as fast as
the specific Tron's update rate, more frequent calls to this routine may be
ignored by the DSP spatialization process.
Wave form Playback Note: cre_update_audio() also provides support for
disk-based wave form playback, by reading ahead sections of wave forms from
disk into RAM buffers, to await playback at interrupt-level. This routine must
be called occasionally (at least once every 200 milliseconds) to assure continuous
playback of disk-based wave forms.

Acoustetron II User’s Guide 65

Chapter 5 Glossary

• 3D sound: refers to the fact that sounds in the real world are three-dimensional.
Human beings have the ability to perceive sound spatially, meaning that they can
figure out where a sound is coming from, and where sounds are in relation to
their surroundings and in relation to each other. There are three main pieces of
information that are essential for the human brain to perform these functions:

• ITD, or Interaural Time Difference, means that unless a sound is located at
exactly the same distance from each ear (e.g. directly in front), it will arrive
earlier at one ear than the other. If it arrives at the right ear first, the brain knows
that the sound is somewhere to the right.

• IID, or Interaural Intensity Difference, is similar to ITD. It says that if a sound is
closer to one ear, the sound’s intensity at that ear will be higher than the
intensity at the other ear, which is not only further away, but usually receives a
signal that has been shadowed by the listener’s head.

• Finally, the trickiest part of spatialization is the fact that a sound bounces off a
listener’s shoulders, face, and outer ear, before it reaches the ear drum. The
pattern that is created by those reflections is unique for each location in space
relative to the listener. A human brain can therefore learn to associate a given
pattern with a location in space.

Since 3D sound consists of two signals (left and right ear) it can be rendered on
conventional stereo equipment, preferably headphones (because of the clean
separation of the two signals). The 3D sound produced by a direct path
AudioReality system is combined with sound reflections (wavetracing) to create a
very high level of realism and immersion in a sound space.

• ambient channel: a way of displaying sounds as coming from everywhere - all
around the listener. This is useful for background music or ambiance sounds such
as rain.

• atmospheric absorption (pp. 3, 27, 42): the attenuation of sounds as they
propagate through a medium. For example, in air the high frequency components
of sound attenuate faster than the lower frequency components.

66 AcoustetronII User’s Guide

• AudioReality: binaural, immersive, interactive, real-time 3D audio technology by
Crystal River Engineering (a trademarked term).

• auralization: the process of rendering audio by physically or mathematically
modeling a soundfield of a source in space in such a way as to simulate the
binaural listening experience at any given position in a modeled space.

• binaural: two audio tracks, one for each ear (as opposed to stereo, which is one
for each speaker). Binaural sounds are what we hear in everyday life.

• Convolvotron: the world’s first multi-source, real-time, digital spatialization
system built by Crystal River Engineering for NASA in 1987.

• direct path: the direct path from a sound source to a listener’s ears (as opposed to
reflections off of surfaces). The direct path allows a listener to tell where each
sound is coming from, 360 degrees both in azimuth and elevation. This is the main
concept of any 3D sound system.

• Doppler effect (p.57): the change in frequency of a sound wave due to the motion
of a sound source or of a listener. For example, if a car moves past a listener while
sounding its horn, the listener will hear a sudden drop in pitch as the car passes.

• extended stereo: a term that summarizes a number of techniques that involve
processing of traditional stereo sounds with the goal of making them appear to
originate from a range which extends beyond the physical speaker locations. The
effect is often limited to a planar arc in front of the listener with everything at the
same elevation. Extended stereo effects tend to be incompatible with headphone
listening and to only have the intended effect if the listener is located at a
particular spot in relation to the speakers (see “sweet spot”).

• Foster, Scott: the founder of Crystal River Engineering and inventor of the
Convolvotron. Often confused with Scott Fisher, his friend and founder of
Telepresence Research.

• gain (pp. 5, 31, 35): the amplification or attenuation of a sound source, usually
measured in dB (decibels). 0 dB means no amplification and no attenuation. A
positive value amplifies a source, a negative value attenuates it.

Acoustetron II User’s Guide 67

• HRTF (p. 3): HRTFs, or Head Related Transfer Functions, are a set of
mathematical transformations which can be applied to a mono sound signal. The
resulting left and right signals are the same as the signals that someone perceives
when listening to a sound that is coming from a location in real-life 3D space.
HRTFs are the core concept behind AudioReality, since they contain the
information that is necessary to simulate a realistic sound space (see
spatialization). Once the HRTF of a generic person is captured, it can be used to
create AudioReality sound for a large percentage of the population (most people’s
heads and ears, and therefore their HRTFs, are similar enough for the filters to be
interchangeable).

• IID: Interaural Intensity Difference, see “3D sound”.

• ITD: Interaural Time Difference, see “3D sound”.

• listener (pp. 1, 19, 23, 51): an object in a sound space that is sampling (“listening
to”) sound, usually a head with associated HRTF characteristics.

• materials (p. 32): by absorbing sound energy at different frequencies, the material
of which an object is made effects the way the sound reflects off and transmits
through the object. A carpeted room sounds very different from a glass room. An
object’s material characteristics can be measured empirically by recording known
sounds as they bounce off of materials.

• medium (pp. 27, 42): see “atmospheric absorption” and “transmission loss”.

• mono/monophonic: refers to a single audio signal, usually rendered on a single
speaker. Mono sounds appear to originate from the speaker, or from the center of
a listener’s head in the case of headphones.

• MIDI (p. 56): MIDI, or Musical Instrument Digital Interface, is a standard control
language that is used for communication between electronic music and effects
devices.

• psychoacoustics: an area of psychology that studies the structure and
performance of human auditory perception.

• quadraphonic sound (pp. 7, 44): refers to four audio signals, usually rendered on
four separate speakers. Quadraphonic sounds appear to originate from
somewhere in-between the four speakers. The inconvenience associated with the
amount of equipment necessary to produce quadraphonic sound, coupled with
the fact that it is not compatible with conventional stereo equipment (and
therefore headphones), makes quadraphonic sound an unpopular choice.

• radiation pattern (pp. 45-47): each sound-emitting object can optionally radiate
sound in a certain pattern (rather than uniformly all around it). For example, a
head should emit sounds in the direction that its nose is pointing.

68 AcoustetronII User’s Guide

• reflection (pp. 31-34): a sound reflection off of a surface. It gives a listener
information about the listening environment and the location and motion of sound
sources. See “surfaces”.

• refraction: sounds get refracted as they travel around the edges and through
openings of objects.

• reverberation: or reverb, refers to the sum of all sound reflections in a listening
environment.

• sample rate (p. 20): the number of samples per second at which a sound is
processed (usually ranges from 8kHz to 50kHz (CD quality is 44.1kHz, or 44,100
samples per second).

• source (pp. 25, 35, 45, 52): refers to an object in 3D space that emits sound. The
actual sound signal that it sends out can be a live signal, a wave file, a MIDI voice,
or any other audio signal. A 3D sound device often gets rated on how many
different sources it can independently position at any one time. Realistic sound
spaces can be created with as few as four concurrent sources, very complex spaces
can have dozens of separate sounds at a time.

• speaker arrays: an installation of multiple speakers in a certain pattern, usually
designed to create a sound field within the space defined by the speakers.
Examples are stereo speakers, or quadraphonic speakers.

• stereo/stereophonic: refers to two audio signals, usually rendered on two
separate speakers. Stereo sounds appear to originate from somewhere between
the two speakers, or between the ears of a listener in the case of headphones.

• surfaces (pp. 31-34): sounds not only travel to a pair of ears on a direct path, but
they also bounce off of objects in the world. Most natural listening environments
contain at least a sound reflecting ground plane, such as a floor. Therefore,
reflecting objects are necessary to make virtual environments sound natural and
realistic. They help listeners navigate and enhance the overall effect of immersion
in a virtual environment. Almost as important as reflections, is the absence of a
reflection. For example, the brain can tell the change in a sound space when A
reflection is removed by opening a door or a window.

• sweet spot (p. 7): the location where a listener has to be placed to get the optimal
effect when listening to a specific speaker setup.

• transmission loss (p. 32): sounds get absorbed as they travel through objects such
as walls (similar to atmospheric absorption in the case of traveling through a
medium). Transmission loss models are needed to realistically simulate sounds
outside a window or in the next room.

Acoustetron II User’s Guide 69

• update rate (p. 58): the number of times that a specific instance of a sound space
gets re-computed and updated per second. Each time any object moves (most
often the listener), the space needs to get updated. The higher the update rate, the
faster objects can move without creating audio artifacts, such as clicking. Audio
update rates generally range from a minimum of 20Hz to 100Hz. Video update
rates are usually in the same range (TV signals are updated at 30Hz).

• wave file: a digital sound file stored in the Microsoft RIFF file format.
• wavetracing: the idea of tracing sound waves as they emit from a source and

bounce around an environment (walls, objects, openings). The resulting sound
reflections are rendered to a listener to create a more convincing 3D effect, as well
as a more immersive, familiar, and realistic sound space.

70 AcoustetronII User’s Guide

FCC Notice

WARNING: This equipment generates, uses, and can radiate radio frequency
energy, and if not installed and used in accordance with this instruction manual,
may cause interference to radio communications. It has been tested and found to
comply with the limits of a class A computing device pursuant to Subpart J of Part
15 of FCC rules, which are designed to provide reasonable protection against such
interference when operated in a commercial environment. Operation of this
equipment in a residential area is likely to cause interference in which case the user,
at her own expense, will be required to take whatever measures necessary to correct
the interference.

